Geometry of the Energy Momentum Mapping of the
Spherical Pendulum

by R. Cushman

0. Introduction

Reconsideration of the spherical pendulum of classical mechanics with
modern mathematical techniques has revealed the occurrence of monodromy in
the way level sets of the energy momentum mapping fit together.

This phenomenon has been observed in Duistermaat [1], where the proof of
its existence uses rather heavy results. Monodromy is a phenomenon which
was not classically investigated because it deals with how certain families of
energy momentum level sets fit together and hence can not be observed by
looking at motions of a fixed energy and angular momentum. The main point
of this article is to give a visual geometric argument which computes the mono-
dromy in the spherical pendulum.

The first part of this article treats the spherical pendulum of classical
mechanics from the point of view of Smale’s program [4]. Specifically, we
study the energy momentum mapping of the spherical pendulum which assigns
to every point in phase space (the tangent bundle of the two sphere) the pair
of real numbers given by the values of the total energy and angular momentum
at that point. Because energy and angular momentum are conserved quantities
[2,5], the spherical pendulum is completely integrable. Moreover the fibers of
the energy momentum mapping are the sets of all positions and velocities with
a given energy and angular momentum.

A well-known theorem of Arnold [1] seems to say that all the fibers, if con-
nected, compact and smooth, are two dimensional tori. But this is only true if
the derivative of the energy momentum mapping is surjective. Arnold’s
theorem does not apply to those motions of the spherical pendulum which are
circles parallel to the equator of the two sphere. Thus we give here a careful
geometric treatment of the topology of the fibers of the energy momentum
mapping of the spherical pendulum. But this is not a complete qualitative
description of the spherical pendulum, because the energy momentum mapping
has monodromy. The monodromy will be treated in the second part of this
article. Proofs are by pictures!

1. Smale’s program
a. The energy momentum mapping.
We start with the construction of the energy momentum mapping of the

spherical pendulum. For the basic physics of the spherical pendulum, see [5]
p- 334 or [6]. Recall that the spherical pendulum is a particle of unit mass



moving on a two sphere S? of unit radius under a constant vertical gravita-
tional force of unit strength. Therefore phase space is the tangent bundle 7'S?
of S2, that is,

xt+x? +x35=

2 _ — 3 3
s = (x’v)_(xl’x27x3’v19v2’v3)ER XR X]V1+XZV2+X3V3=O

with projection 7:TS2->S%(x,v)x.
Pictorially elements of the tangent
space T, S to S? at x are represented
by arrows with tail at x and perpen-

dicular to x (Figure 1). TS? is the dis-
joint union of all tangent spaces. The
Hamiltonian function of the spherical

pendulum is the sum of the kinetic

Figure 1. . .
A tangent plane T, S to the 2-sphere §2 and _potenual .energy of the particle
at the point x. and is the function

H: TS’ R:(xv) = %IvIP+x; = b} +vE+v3)+x,

Since a rotation of S? about the x;—axis is a symmetry of the spherical pen-
dulum, there is a corresponding conserved quantity (=integral) called the
angular momentum, which is the function

L:TS?> R:(x,v) » Xv1—X vy

Combining the energy and the angular momentum gives the energy momentum
mapping
EM: TS2» RZ:(xy) » (H(xw),L(xW)).

b. Critical points and critical values

To analyze the energy momentum mapping, the first order of business is to
find its critical points, that is, points where its derivative D& is not surjec-
tive. The rank of D &9 is zero at the critical points of H (= critical points of

L). These are precisely the
equilibrium points of the /
spherical pendulum where
the particle does not move, /
that is (n,0), (5,0)€TS? \ -
where n (respectively s) are
the  north  (respectively \
south) pole of S%. The

Figure 2.

correspondmg critical values Image of energy momentum mapping of spherical pendulum.

of &I are (1,0) and (—1,0). Darkened curve is energy momentum values of relative equilibria.
Large dots are energy momentum values of equilibria.




The rank of D&Y is one when the derivatives of H and L are linearly depen-
dent. This dependency occurs only on those orbits of the Hamiltonian system
which are also orbits of the axial symmetry. Such orbits are called relative
equilibria. In the spherical pendulum the relative equilibria are circles on §2
which lie in a horizontal plane cutting the southern hemisphere. Calculations
show that for a given noncritical value # of H, the angular momentum L
attains its maximum and minimum values on the relative equilibria. Further-
more, calculations show that the darkened curves in Figure 2 are the critical
values of &9 corresponding to the relative equilibria. The image of &9 is the
region in Figure 2 bounded by the darkened curves.

c. Regular fibers

The set of regular values 4 of the energy momentum mapping consists of
those points in the image which are not critical values. If r =(h,/) ER, then
9, =69~ (r) is a regular fiber. Our next task is to determine the topological
type of the regular fibers. Because r is a regular value of &M, Arnold’s
theorem [1] implies that each connected component of 9, is a smooth two
dimensional torus. The following discussion not only shows that ¥, is con-
nected but also shows how to visualize the torus. The basic idea is to describe
9, as some sort of bundle lying over U, =m(9,)CS% The next argument
shows that U, is the closed region of S? which is shaded in Figure 5. Suppose
(x,)EY, and x54n, s. Then on T, S? the inverse image L~ '(/) is the affine
line

| = XV 17XV,

with x50 or x,50. The closest point of LX) to the origin of T, S? is the
vector

0:

v (x 27X 1’0)'

x12+x22

Since |lv [[>=lv°l|? for all v EL~'(/)N T, S?, using 1=x{ +x# +xZ, we obtain

™

2k —x3) = 2H(xv)—x3) = 2H(xy)—x5)= 1—x2

(see Figure 3). Thus U, is the set of all x €S? satisfying (*). Consider the
cubic polynomial

V(xs) = 1—x3)h —x3)

t40

Figure 3.
Geometry of H (k) and L ~'(/) in a fixed tangent space T, S2

6



(see Figure 4). Then V~!([4/%,00[)=[z —,z 4] is the set of all x5&[—1,1] which
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h =1
Figure 4.
Graph of ¥ with ¥ ~!( [2,00] ),4!*< g'lli.)l(l]V(x) indicated by hatched interval [z _,z ,].

satisfy (*). As long as

0<Wl’<V, = max V(x3)
x€E[-1,1]
the interval [z _,z ,] does not degenerate to a point and also is properly con-
tained in [—1,1]. Thus U, is the closed annular region of S? bounded by the
two circles C,:x3=z+ and C;:x3=z_. When /=0 and —1<h <1, U, is the
closed region of S? containing the south pole s and bounded by C,:x;=h.

nCn n*n
c_,c®,c® c_.c®c*
s s

~1<hel, =0

h>1,850

Figure 5.
Description of T, as a bundle over U,.

When /=0 and h>1, then U,=S2% To complete our picture of J, as a



bundle over U, we must determine the fiber 7~ (x)E9, over x EU,. A close
look at Figure 3 shows that if /540 and equality holds in (*), that is, x lies on
the boundary oU, of U,, then v must be equal to v0. Thus the fiber of 9, over
x E3U, is a single vector v® with zero third component. If /0 and strict ine-
quality holds in (*), that is, x lies in the interior of U,, then the fiber " 1(x)
of 9, consist of two vectors with nonzero third component. Now suppose { =0
and —1<h <1. Then for x €3U,, that is, x;=h, =~ !(x) is the zero vector. If
x €U, —{s}, 7~ (x) consists of two nonzero vectors of opposite sign. If x =s,
then « (x) is the circe C*:lvl*?=2(h+1) in T,5? since
LY 0)NT,S*=T,S% Finally suppose that /=0 and h>1. Then for
x €U, —{s,n}, 7~ '(x) is two nonzero vectors of opposite sign; while 7~ (s) is
the circle C*:vl?=2(h+1) in T,S> and « !(n) is the circle
C™:|lvl*=2(h — 1) in T, S° (see Figure 5). This completes the description of %,
as a bundle over U,. To see that 9, is a two dimensional torus, we first split
each of the circles C,,C; or C*,C" into two disjoint circles. Over the remain-
ing points of U, the fibers of J, consists of two vectors with nonzero third
component. Taking those vectors with positive (negative) third component, we
construct two cylinders, each with two labeled circles as boundary. Identifying
the circles with the same label gives a two dimensional torus. (cf. Figure 6)

Figure 6.
Identification of regular fiber with a 2-torus

d. Critical fibers

Now we turn our attention to determining the topology of the fibers over
the critical values. The fiber corresponding to the critical value (—1,0) is the
stable equilibrium (s,0), that is, 69 !(—1,0)=(s,0). By construction the fiber
corresponding to a relative equilibrium with critical value (/, &) is a circle in
TS? corresponding to a positively (negatively) oriented horizontal circle in S2
if >0 (I <0) and its oriented tangent vector of length 4. Only the topology of



F=691"1(1,0) corresponding to the critical value of the unstable equilibrium
needs to be found. Clearly m(%)=S2. The fiber of F over x €S*—(s, n} con-
sists of two vectors of opposite sign with nonzero third component; the fiber
over s is a circle C*; and the fiber over n is the zero vector (see Figure 7).

TR

Figure 7.
Identification of singular fiber EM™'(1,0) as one point compactification of a
cylinder.

Cut off a small circle C* near n. Split C* and C* into two circles and form two
cylinders from the vectors in the fiber of J: one from the vectors with positive
third component and the other from the vectors with negative third com-
ponent. Join the circles labeled C° together and collapse both C* circles to a
single point. Thus ¥ is a one point compactification of cylinder. In other
words, T is a 2-sphere with its north and south pole pinched to a point.

e. Energy surface

Next we determine the topology of each energy surface H ~'(h), h>—1.
Let #=w|H (k). Suppose —l<h<Il. Then H'(h) is smooth. Since
2(h —x3)=IvI*>=0, =(H '(h))={x €S*x;<h} which is topologically a
closed 2-disc D% Over x €D? the fiber # '(x) of H™'(h) is the circle
{v €T3_282|||v 2=2(h —x,)}; while over x €dD% # '(x) is the zero vector.
Split D* along a diameter £ into two disjoint half open discs D .. and let &,
u €]— L[, be a fibering of D by parallel half open line segments perpendic-
ular to £ (see Figure 8). For each u €]—1,1[, the inverse image #~ (&) is
topologically a 2-disc D2, being the union of circles which shrink to a point.



Figure 8.

Some of the building blocks of H ~'(h), —1<h<1.
Therefore #~ (D), being the union of 2-discs 9, over u €]—1,1[, topologi-
cally a 3-disc D3. As shown in the second row of Figure 8, #\(£) is topolog—
ically a two sphere S¢. Therefore H !(h) is the union of two 3-discs D3
joined along a 2-sphere S§. Hence, H ~!(h) for —1<h <1 is topologically a
three dimensional sphere S3. Now suppose that & >1. Then H ~'(k) is smooth
and #(H ~'(h))=S2 As before, over x €S? the fiber # !(x) is a circle in
T, S% Thus H™!(h) is topologically the tangent unit sphere bundle T',S? to
S2. But T,S? is the set of all pairs of orthonormal vectors in R %, which in
turn is the set of all right handed orthonormal bases of R 3. Therefore H ~'(h)
is the group SO(3) of proper rotations of R3. Since SO(3) is doubly covered
by the special unitary group SU(2), which is topologically a three dimensional
sphere S3, SO(3) is topologically real projective three space R P>. When h =1,
H~!(1) is not smooth, since it contains the critical point (n,0). However
#(H~1(1))=S2 Over x €ES*—{(n}, the fiber #'(x) is a circle; while if x =n,
# Yn)=(n,0). Thus H (1) is 7,52 with the fiber over n pinched to a point.
All the information we have obtained about the topology of the fibers and
energy level sets of the energy momentum map is summarized in Figure 9.

2 .
TS with one T

fiber pinched to a point

Figure 9.
Topology of fibers of energy momentum mapping.
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[ Fitting together of fibers

We now show how the fibers of the energy momentum mapping fit
together to form a fixed smooth energy surface. Fix h € ]—1,1[ U ]1,00[ and
let L= be the intersection of the image of &9 and a positive (negative) half
line parallel with the /-axis. The fiber of H ~'(h) over L;* is a solid torus ST™*
which  topologically is S!'XD2 In view of the equation
H™Yh) = o7\ I;H)Ur"(h,00Unr "1 (L,"), each smooth energy surface is the
union of two solid tori ST™ joined together along a two dimensional torus
T?=x"(h,0). More precisely, ST* and ST~ are glued together by an attach-
ing mapping which is a diffeomorphism of T2. The problem is: how to visual-
ize this gluing mapping.

Figure 10.
S$? as an S bundle over 52

Suppose —1<h <1, then H (k) is S>. The key observation is that S* is a
fiber bundle over S2 with fiber S! and group S' [7, p. 7]. Figure 10 gives a
geometric realization of this bundle. Note that S is thought of as the one
point compactification of R3. Thus the vertical line in the figure is a circle.
All the S! fibers pass transversally through either the 2-disc I or the 2-disc 17,
except the circles 4 and B which are the boundaries of I and II respectively.
These 2-discs are identified with the hemispheres of S with the same
numbers; while the circles 4 and B are identified with the equator of S 2 The
set of all fibers over each hemisphere of S? is a solid torus, being the union of
all fibers which pass through either I or II; while the set of all fibers over the
equator is T2. Figure 11 shows the S’ fibers on T2 (oriented according to the
action of the group S'!) from the point of view of the section “a” or ”b” which
corresponds to A or B respectively. All the S fibers on T2 can be throught
of as the flow lines of a linear vectorfield on T2 Taking the 4 circle as being
horizontal, the flow lines are as depicted in the left hand side of Figure 11. The
difference between the two left hand pictures is that in the first B is vertical
while in the second the flow lines are vertical. This describes the "a”
viewpoint. The ”b” viewpoint is obtained similarly. The mapping ¢ on T?

10
given by [ +1 1] , is the change from the ”a” viewpoint on T2 to the ”b”
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viewpoint. Moreover, ¢ shows how the solid torus ST+ over

SO v
N el

a b

diagonal lines are S fibers with arrows giving direction of S'! action on fiber;
dots joined by light lines give lattice defining 72

7S

b

S! fibers are vertical and viewpoint section horizontal; ¢ maps a to a and b

10
tob andis | _, | with respect to standard basis.

Figure 11.
The gluing map for the solid torus decomposition of S°.

the upper hemisphere is §lued to the solid torus over the lower hemisphere.
Given an orientation of T, the choice of sign in ¢ is determined by the action
of S! on the fibers [7, p. 135].

Suppose h>1, then H (k) is RP%. Since every proper rotation of R? is
uniquely specified by giving an oriented axis of rotation and a right handed
twist less than or equal to a half turn about this axis, RP*=S0(3) can be
visualized as a closed 3-disc D> in R of radius %. (The length of the oriented
axis, which is a vector in R 3, gives the fraction of a turn about the axis). On
the boundary 8D?, which is a two dimensional sphere, diametrically opposite
points are identified. Figure 12 gives the geometric realization of R P’ as an S*
bundle over S2. Again there are two 2-discs: I and II where II is the union
of II' and II"” with diametrically opposite points on the heavy dashed line
identified (see Figure 12).

[N ——

Figure 12.
RP? as an S! bundle over S2
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All the S! fibers except A and B, pass transversally through either I or I1.
The S is assembled as in the S* case and also the solid torus decomposition.
The S! fibers on T? are again drawn from the ”a” and "b” section viewpoints
(see Figure 13). Note that the fiber B wraps twice around the hole of 72 while
wrapping once around the meridian. The mapping § from the “a” to the ”b”

10
viewpoint is [ +2 1] , which is the gluing map of the solid tori in R P>.

Figure 13.
The gluing map on T2 for the solid torus decomposition of R P*.

2. Bifurcation and monodromy
a. Existence of monodromy.

A glance at Figure 9 discloses that as h passes through 1 the topology of
the energy surface H ~'(h) changes from that of a three dimensional sphere to

13



that of real projective three space. This bifurcation of H~!(h) (see Figure 14)

<

X—1—~

h

Antipodal points on §? identified

Antipodal points on S? identified.
Origin has conelike singularity.

-1 <h <1

Figure 14.

52 identified to a point.
(Gives double cover of & >1 picture).

is not due to a local bifurcation in the
topology of the fibers of the energy
momentum mapping, because over any
open set U of regular values which
does not contain (1,0),
&M WU)=U XT? that is, &M has
two dimensional tori as fibers over U.
In fact, the bifurcation of the energy
surfaces signals the presence of mono-
dromy in the energy momentum map-
ping, as the following discussion
shows.

Let y be a circle in the set & of
regular values of &9 with center at
(1,0). Consider the bundle
B=6I"!(y) over y with fiber T2. Up
to isomorphism % depends only on the
homotopy class of vy in ®. Let I'* be
paths in the image of &9 as drawn in
Figure 15. Suppose that % is a trivial
bundle, that is, B is diffeomorphic to
yX T2 Then &M YT7) s
homeomorphic to &M~ (I'*"). But
&M YT'~) is homeomorphic to
H™'(h") for some h’€]—1,1[, which
in turn is homeomorphic to S?; while
&M YT'*) is homeomorphic to
H™'(h”) for some h”>1 which in
turn is homeomorphic to R P°.

But S> and 9 P? are not topologically equivalent. Hence % is not a trivial bun-
dle. Let ¢ €y, then $' =& (y—{c}) is a trivial 72 bundle, since y—{c} is
contractible. Therefore % is obtained from %’ by a gluing diffeomorphism ¢ of
T?=69M"!(c) into itself. The mapping ¢ is called the monodromy mapping of
the bundle ®. Since isotopic monodromy mappings give rise to isomorphic
bundles over v, the fact that % is nontrivial implies that ¢ is not isotopic to the

identity.
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b. Calculation of monodromy.

A technical argument which is given below shows that the gluing maps of

- 10
the S' bundles 69 }(T'") and &MT ™) are respectively §~ = _5 1] and
10 . 10
¥"=|_; 1| - Therefore the monodromy is ¢=(y Y loy~= 11l We
now give the technical argument. The nonexpert reader is advised to skip the

remainder of the subsection.

In order to compute the monodromy of ® we introduce a certain
Ehresmann connection [8] on % which allows us to parallel transport geometric
objects from one fiber of % to another. Using a partition of unity it suffices to
construct the connection locally. A nice local trivialization of % over vy is given
by a choice of action angle coordinates [1]. For each (k, /) in some connected
open subset V' of y the construction of action angle coordinates gives a
Hamiltonian vectorfield X on the fiber T,,z,, of % over (h,l) such that
1) X is a linear combination of the Hamiltonian vectorfields X; and Xy

associated with the Hamiltonian functions L and H respectively;
2) Xr on T}%; has only periodic orbits of period one;
3) X, and Xy generate a lattice L, which defines 7}?, and depends
smoothly on (h,/)EV.

Thus %y, the piece of ® over V, is diffeomorphic to ¥ XT2 On %, we
define the vertical vector-
fields of our Ehresmann
connection to be vectorfields ot —
which are linear combina-
tions of X; and Xy while
the horizontal vectorfields
are nonzero vectorfields on 7
V. Using this connection,
parallel translation ¢~ along
the piece I'" of y which
joins P to Q transports the I
lattice Lp into the lattice Ly
(see Figure 15). Thus ¢~ is a Figure 15.
diffeomorphism of T} onto Monodromy and bifurcation of the energy surfaces.
T4 which is the gluing map

10
*+11

(h",0) h

] of the bundle 69 Y(T'"™). Similarly, parallel translation ¢+ along

10
the piece I'" of y joining P to Q is the gluing map [+2 1] of the bundle

&MITH).
We now have to answer the delicate question of which sign to choose in ¢~
and ¢*. As remarked earlier the sign choice is determined by the orientation

15



of the bundle space (which induces an orientation on the two dimensional
torus T2) and the orientation induced by the action of the group S! on the
oriented fiber S!. In our case we determine the sign as follows. Let p I
and p ET2 Suppose that Xy (5) and Xp(p) are linearly independent at p.

(This does not depend on the choice of p ETZ) We say that the Hamiltonian
vectorfield Xy on T, has positive sense wnh respect to the ordered basis
{X, (), Xp(p)} of the lattice L,, if Xy(f)=aX (p)+BXp(p) where either
a>0 and B>0 or a<<0 and B<0; otherwise Xy has negative sense. When
parallel transportmg L, along T'™* from P to Q, Xy and X are linear depen-
dent only at R™ (see Flgure 15) that is, when / =0, because only then does Xj
have a periodic flow on T;%;. As !/ changes sign, X; does also; more precisely,
X, (p=—X_(p) where p=(h,J)ET*, I>0 and p'=(h,—I)ET™. Since Xy
and Xy are continuous, when / changes sign, the sense of X changes as p
passes through R*. Since the only sense change occurs at R* and by a suit-
able choice of Xy the sense of Xy at P can be made positive, the sense of Xy
at Q, after being transported along I'” (I‘+) from P to Q, is negative. There-
fore the signs of both attaching maps ¢~ are negative. Hence parallel transla-
tion along I'” from P to Q followed by parallel translation along the inverse
of T* from Q to P defines a diffeomorphism ¢ of 77 into itself which is given

1

by
~ 10] ([ 10 10
¢ =6 2[—21] [—11 = [11]-

¢ is the monodromy mapping of the bundle &9~ '(y) where y=(T*")"1oI'".

c. Other calculations of monodromy.

In addition to the above calculation, there are three other entirely different
arguments which compute the monodromy of the spherical pendulum. The first
is a physical geometric argument of Duistermaat [1] which will not be repeated
here. The second one due to F. Ehlers in Bonn in essence shows that &9 for
values close to (1,0) is isomonodromic with its 2-jet at (n,0). This result is
nontrivial because (n,0) is not a finitely determined singularity of &9 On the
other hand, the 2-jet of &I at (n,0) is the energy momentum mapping of the
two dimensional harmonic oscillator, for which the monodromy is easy to com-
pute. For further details see [9]. In this same paper Min Oo in Bonn gives the
following sequence of pictures (Figure 16) which geometrically computes the
map ¢. :H (T,)—H (T;) on homology induced by the monodromy ¢. (Notice
that the conventions in Figure 16 are the same as those in Figure 5). Here it is
sketched how the two generators 8y,6 of the homology group are transformed
when moved around the isolated singular value on y.
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Figure 16.

Monodromy on Homology.

For 1=1,2,3,4 cycles §;,¢; are basis of homology of 7;%; obtained by homoto-

py from & 1,1, /=12,3,4. ¢ is homologous to ¢+ 8 and &, and 8. Thus
10

"= 1]

-«

on homology.
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